A Detailed Look at Europa

NASA's Europa Clipper will be the first space mission dedicated to conducting a detailed study of an ocean world — a world that likely harbors a salty ocean with twice as much water as Earth beneath its icy crust. Targeting Jupiter’s icy moon Europa, the mission aims to study this world’s atmosphere, surface and interior to understand whether its water, chemistry and energy could support life.

Visit Mission Site

Mission

NASA's Europa Clipper mission, a partnership between APL and the Jet Propulsion Laboratory in Pasadena, California, will perform more than 40 close flybys of Europa, zipping from about 1,700 miles (2,700 kilometers) to as close as 16 miles (25 kilometers) above the surface of Jupiter's icy moon. These flybys will provide access to a diverse and widely distributed set of geologic terrains, providing data to constrain and test geophysical and geochemical models of the ice shell and ocean.

Over a mission planned for at least 3.5 years, the spacecraft’s instruments will map more than 80% of Europa's surface at resolutions from as high as about 300 feet (100 meters) per pixel to as low as 3 feet (1 meter) per pixel. They’ll determine the presence and depth of a subsurface ocean in globally distributed regions, determine the chemicals present on the surface and, potentially, fly through an erupted water plume.

While not meant to find life itself, the mission will help determine what ingredients for life are present and answer questions about how they interact with one another to create a habitable world.

Europa Clipper is in development, with a planned launch date in the mid-2020s.

Spacecraft and Instruments

The Europa Clipper spacecraft spans about the size of a basketball court (82 feet or 25 meters) between the tips of the solar-array wings. The magnetometer is mounted on a 28-foot (8.5-meter) extendable boom, and the antennas of the radar instrument are mounted on the solar panels. Other instruments are mounted either on a deck facing the surface or ram direction during the Europa flybys. The spacecraft is equipped with a 10-foot (3-meter) dish antenna for Earth communication.

Europa Clipper will be outfitted with nine instruments, enclosed in an aluminum-titanium vault to shield them from Jupiter’s radiation. These instruments include APL-built cameras that will capture parts of Europa in unprecedented resolution and provide 3D images of the surface; spectrometers — including one built by APL — that will determine the chemical composition of both the surface and Europa’s thin atmosphere; an ice-penetrating radar instrument to determine the thickness of the moon’s icy shell; and a magnetometer that will help determine how deep and salty Europa’s subsurface ocean is. Europa Clipper is also equipped with an APL-built charged particle detector, which will investigate the interactions between Europa and particles in Jupiter’s magnetosphere that can alter the moon’s surface processes and characteristics. Finally, the APL-built telecommunications system will enable gravity and radio science.

 

Mission Facts

Launch
Mid-2020s

Project Manager
Jan Chodas, Jet Propulsion Laboratory

Assistant Project Manager
Thomas Magner, Johns Hopkins APL

Project Scientist
Robert Pappalardo, Jet Propulsion Laboratory

Deputy Project Scientist
Haje Korth, Johns Hopkins APL

Program Manager
Scott Bellamy, NASA Marshall Space Flight Center

Program Scientist
Curt Niebur, NASA Headquarters


 

Rendering of the Europa Clipper Spacecraft with Jupiter and Europa in the background
An interactive, 3D rendering of the Europa Clipper spacecraft. Click on the image and drag to see all angles of the spacecraft.

Mission Instruments

Europa Clipper spacecraft

Learn More About Instruments on this Mission